

## Daily Tutorial Sheet-1 JEE Main (Archive)

**1.(C)**  $N_2$  has triple bond and each covalent bond is associated with one pair of electrons, therefore, six electrons are involved in forming bonds in  $N_2$ .



p-dichlorobenzene

The two dipole vectors cancelling each other giving zero resultant dipole moment. *o*-dichlorobenzene has greater dipole moment than meta isomer.

$$\begin{array}{c} \text{Cl} \\ \mu_1 > \mu_2 \\ \text{($o$-dichlorobenzene)} \\ \text{dipole vectors are } 60^\circ \text{ angle} \\ \end{array}$$

Ethylbenzene is less polar than both ortho and para dichlorobenzene. Therefore, the increasing order of dipole moment is p-dichlorobenzene < Ethylbenzene < m-dichlorobenzene < o-dichlorobenzene.

**3.(A)** H-bond is the strongest intermolecular force.

All are different with 1, 0 and 2 lone pairs of electrons at central atom.

**4.(A)** In NH  $_3$  and BF  $_4^-$  the hybridization is  ${\rm sp}^3$  and the bond angle is almost 109°28

**5.(B)** 
$$O_2^+(15) = KK\sigma 2s^2, \sigma * 2s^2, \sigma 2p_x^2, \{\pi 2p_y^2 = \pi 2p_z^2, \{\pi * 2p_y^1 = \pi 2p_z^0\}\}$$
  
Bond order  $= \frac{1}{2}(8-3) = \frac{5}{2} = 2.5$ 

$$O_2(16) = KK\sigma 2s^2, \sigma*2s^2, \sigma 2p_x^2, \{\pi 2p_y^2 = \pi 2p_z^2, \{\pi*2p_y^1 = \pi*2p_z^1\}\}$$

Bond order = 
$$\frac{1}{2}(8-4) = 2$$

$$O_2^-(17) = KK\sigma 2s^2, \sigma*2s^2, \sigma 2p_x^2, \ \{\pi 2p_y^2 = \pi 2p_z^2, \{\pi*2p_y^2 = \pi*2p_z^1, \pi*2p_y^2 = \pi*2p_z^1, \pi*2p_y^2 = \pi*2p_z^2, \pi*2p_z^2 = \pi*2p_z^2 = \pi*2p_z^2, \pi*2p_z^2 = \pi*2p_z^2$$

Bond order = 
$$\frac{1}{2}(8-5) = 1.5$$

$$O_2^{2^-}(18) = KK\sigma 2s^2\sigma * 2s^2\sigma 2p_x^2, \ \{\pi 2p_y^2 = \pi 2p_z^2, \{\pi * 2p_y^2 = \pi * 2p_z^2, \pi * 2p_y^2 = \pi * 2p_z^2, \pi * 2p_z^2 = \pi * 2p_$$

Bond order = 
$$\frac{1}{2}(8-6) = 1$$

**NOTE:** As we know that as the bond order decreases, stability also decreases and hence the bond strength also decreases. Hence the correct order of their increasing bond strength is  $O_2^{2-} < O_2^- < O_2^- < O_2^+$  ll cases.

## 6.(A) Tips/Formulae:

 $Hybridisation = \frac{1}{2} \Big[ \Big( \text{No. of electron in valence shell of atom} \Big) + \\$ 



 $\binom{\text{No. of monovalent}}{\text{atoms around it}} - \Big( \text{charge on cation} \Big) + \Big( \text{charge on anion} \Big) \Big]$ 

(a) For  $AlH_3$ ,

hybridization of Al atom = 
$$\frac{1}{2}[3+3-0+0] = 3 = \text{sp}^2$$

For AlH<sub>4</sub>,

Hybridisation of Al atom = 
$$\frac{1}{2}[3+4-0+1]=4=sp^3$$

(b) For  $H_2O$ ,

Hybridisation of O atom = 
$$\frac{1}{2} \left[ 6 + 2 - 0 + 0 \right] = 4 = sp^3$$

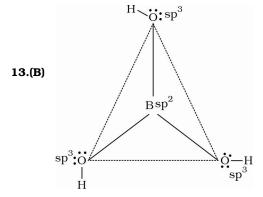
For H<sub>3</sub>O<sup>+</sup>, Hybridisation of O atom = 
$$\frac{1}{2}[6+3-1+0]=4=\text{sp}^3$$

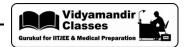
For 
$$NH_3$$
 Hybridisation of N atom  $=\frac{1}{2}[5+3-0+0]=4 \text{ sp}^3$ 

For 
$$NH_4^+$$
, Hybridisation of N atom  $=\frac{1}{2}\Big[5+4-1+0\Big]=4=sp^3$ 

Thus hybridization changes only in option (A).

- **7.(C)** In ether, there is no H-bonding while alcohols have intermolecular H-bonding
- **8.(B)** Both  $NO_2$  and  $O_3$  have angular shape and hence will have net dipole moment.
- **9.(B)** In H<sub>2</sub>S, due to low electronegativity of Sulphur the L.P. L.P. repulsion is more than B.P. B.P. repulsion and hence the bond angle is minimum.


$${\rm SO_2} \qquad {\rm H_2O} \qquad {\rm H_2S} \qquad {\rm NH_3}$$
 Bond angle 119.5° 
$$104.5^{\circ} \qquad 92.5^{\circ} \qquad 106.5^{\circ}$$

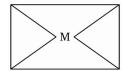

**10.(A)** Both  $XeF_2$  and  $CO_2$  have a linear structure.

$$O = C = O$$

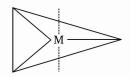
11.(A) the order of bond angles

**12.(B)** Now since bond order of NO<sup>+</sup> given (3) is higher than that of NO (2.5). Thus bond length of NO<sup>+</sup> will be shorter.

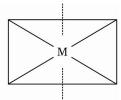





## **14.(A)** $XeF_4$ ( $sp^3d^2$ square planar),


 $[Ni(CN)_4]^{2-}$  (dsp<sup>2</sup> square planar),

 ${\rm BF}_4^-$  (  ${\rm sp}^3$  tetrahedral),  ${\rm SF}_4$  (  ${\rm sp}^3{\rm d}\,$  see saw shaped)


## 15.(D)



 $dsp^2$  hybridisation Number of 90° angle between bonds = 4



sp<sup>3</sup>d or dsp<sup>3</sup>hybridisation Number of 90° angle between bonds = 6



 $sp^3d^2$  hybridisation Number of 90° angle between bonds = 12